The Surface S

In this class, we will limit ourselves to studying only those surfaces that are formed when we change the location of a point by varying **two** coordinate parameters. In other words, the other coordinate parameters will remain **fixed**.

Mathematically, therefore, a **surface** is described by:

```
1 equality (e.g., x=2 or r=3)
```

AND

2 inequalities (e.g., -1 < y < 5 and -2 < z < 7, or $0 < \theta < \pi/2$ and $0 < \phi < \pi$)

Likewise, we will need to **explicitly** determine the **differential** surface vector \overline{ds} for each contour.

We will be able to describe a surface for **each** of the coordinate values we have studied in this class!

Cartesian Coordinate Surfaces

The single equation z = 3 specifies all points P(x,y,z) with a coordinate value z = 3. These points form a plane that is parallel to the x-y plane.

* As we move across this plane, the coordinate values of x and y will vary. Thus, the size of this rectangular plane is defined by two inequalities --

X

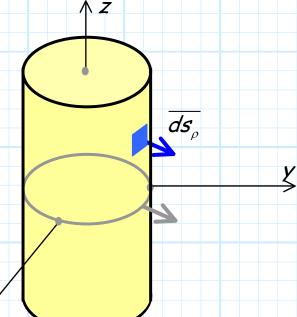
- $c_{x1} \leq x \leq c_{x2}$ and $c_{y1} \leq y \leq c_{y2}$.
- * Note the differential surface vector $\overline{ds_z}$ (or $-\overline{ds_z}$) is orthogonal to every point on this plane.
- * Similarly, the equations y = -2 or x = 6 describe **planes** orthogonal to the x-z plane and the y-z plane, respectively. Likewise, the differential surface vectors $\overline{ds_y}$ and $\overline{ds_x}$ are orthogonal to each point on **these** planes.

Summarizing the Cartesian surfaces: 1. Flat **plane** parallel to the y-z plane. $x = c_x$ $c_{y1} \le y \le c_{y2}$ $c_{z1} \le z \le c_{z2}$ $\overline{ds} = \pm \overline{ds_x} = \pm \hat{a}_x \, dy \, dz$ 2. Flat plane parallel to the x-z plane. $c_{x1} \leq x \leq c_{x2}$ $y = c_y$ $c_{z1} \leq z \leq c_{z2}$ $\overline{ds} = \pm \overline{ds_y} = \pm \hat{a}_y \, dz \, dx$ 3. Flat plane parallel to the x-y plane. $c_{x1} \leq x \leq c_{x2}$ $c_{y1} \leq y \leq c_{y2}$ $z = c_z$ $\overline{ds} = \pm \overline{ds_7} = \pm \hat{a}_7 \, dy \, dx$

With **cylindrical** coordinates, we can define surfaces such as $\phi = 45^{\circ}$ or $\rho = 4$. These surfaces, however, are more **complex** than simply planes.

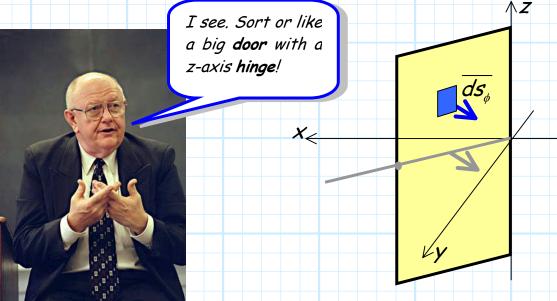
Cylindrical Coordinate Surfaces

For example, the surface denoted by ρ =4 is formed by all points with coordinate ρ =4. In other words, this surface is formed by all points that are a distance of 4 units from the *z*-axis—a cylinder !



- * As we move across this cylinder, the coordinate values of ϕ and z will vary. Thus, the size of this cylinder is defined by two inequalities-- $c_{\phi 1} \le \phi \le c_{\phi 2}$ and $c_{z 1} \le z \le c_{z 2}$.
- * Note a cylinder that completely surrounds the z-axis is described by the inequality $0 \le \phi \le 2\pi$. However, the cylinder does **not** have to be complete! For example, the inequality $0 \le \phi \le \pi$ defines a **half**-cylinder,
- * We note the differential surface vector $\overline{ds_{\rho}}$ (or $-\overline{ds_{\rho}}$) is orthogonal to this surface at **all** points.

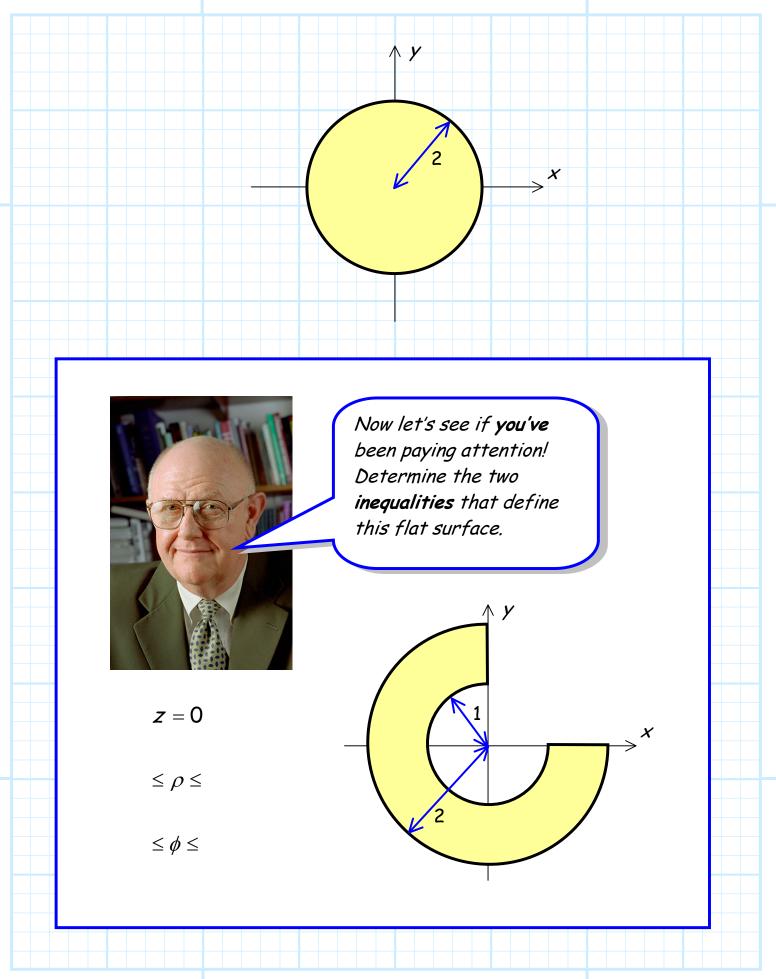
Another surface is defined by the equation $\phi = 45^{\circ}$. This surface is formed only from points with coordinate value $\phi = 45^{\circ}$. The surface is a **half-plane** that extends outward from the *z*-axis.

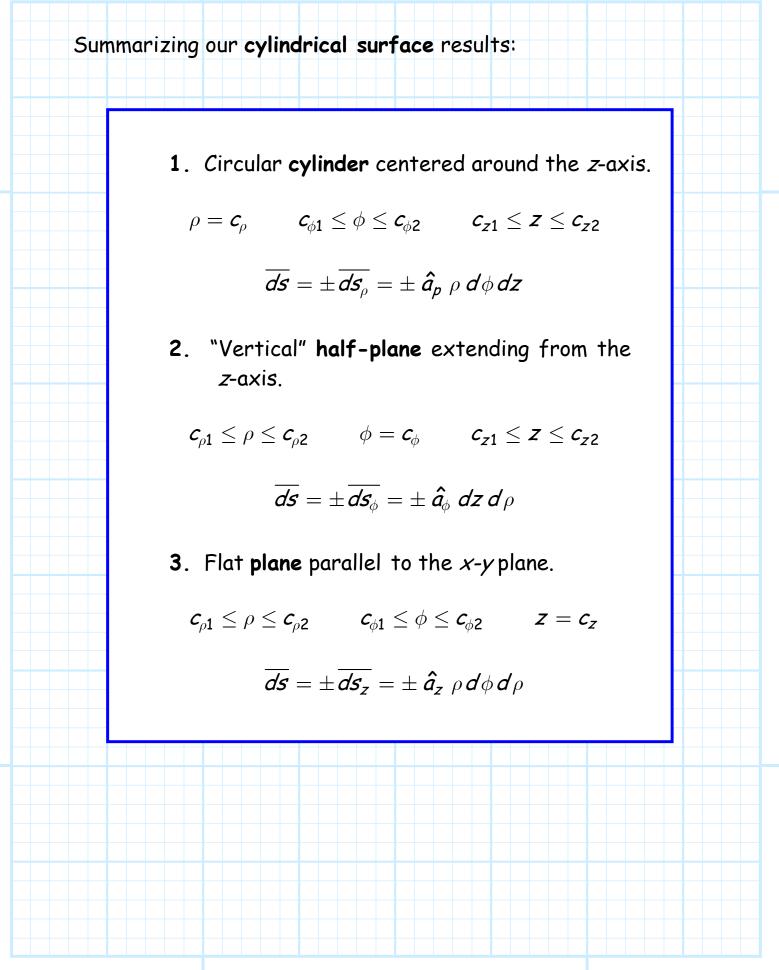


Note the differential surface vector $\overline{ds_{\phi}}$ is **orthogonal** to this surface at every point.

The final cylindrical surface that we will consider the type formed by the equality z = 2. We know that this forms a flat plane that is parallel to the x-y plane.

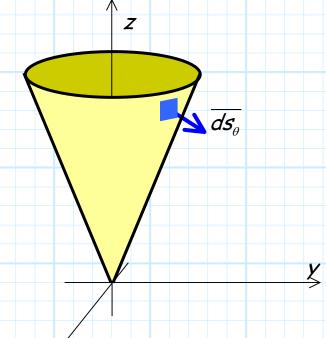
- * Using the inequalities of **Cartesian** coordinates, this flat plane is rectangular in shape. However, using **cylindrical** coordinates inequalities, this plane will be shaped like a **ring** or a **disk**.
- * For example, the surface z = 0, $0 \le \rho \le 2$, $0 \le \phi \le 2\pi$ describes a circular disk of radius 2, lying **on** the x-y plane, and centered at the **z**-axis:





Spherical Coordinate Surfaces

The surface defined by $\theta = 30^{\circ}$ is formed only from points with coordinate $\theta = 30^{\circ}$. This surface is a **cone**! The apex of the cone is centered at the origin, and its axis of rotation is the z-axis.



- * Note that the differential surface vector $\overline{ds_{\theta}}$ is **normal** to this surface at every point.
- * Just like a cylinder, a **complete** cone is defined by the inequality $0 \le \phi \le 2\pi$. Alternatively, for example, the equation $\pi \le \phi \le 3\pi/2$ defines a **quarter** cone.

*

Say instead our equality equation is r=3. This defines a surface formed from all points a distance of 3 units from the origin—a **sphere** of radius 3!

- * This sphere is **centered** at the origin.
- * The differential surface vector $\overline{ds_r}$ is normal to this sphere at all points on the surface.
 - If we wish to define a **complete** sphere, our inequalities must be:

 $0 \le \theta < \pi$ and $0 \le \phi < 2\pi$

otherwise, we will be defining some **subsection** of a spherical surface (e.g., the "Northern Hemisphere".).

Finally, we know that the equation $\phi = 45^{\circ}$ defines a vertical **half-plane**, extending from the *z*-axis.

However, using **spherical** inequalities, this vertical plane will be in the shape of a **semi-circle** (or some section thereof), as opposed to rectangular (with cylindrical inequalities).

 $\phi = \frac{\pi}{2}$

>y

X

Summarizing the spherical surfaces: 1. Sphere centered at the origin. $r = c_r$ $c_{\theta 1} \le \theta \le c_{\theta 2}$ $c_{\phi 1} \le \phi \le c_{\phi 2}$ $\overline{ds} = \pm \overline{ds_r} = \pm \hat{a}_r r^2 \sin\theta d\theta d\phi$ 2. A cone with apex at the origin and aligned with the z-axis. $c_{r1} \leq r \leq c_{r2}$ $\theta = c_{\theta}$ $c_{\phi 1} \leq \phi \leq c_{\phi 2}$ $\overline{ds} = \pm \overline{ds_{\theta}} = \pm \hat{a}_{\theta} r \sin \theta \, d\phi \, dr$ 3. "Vertical" half-plane extending from the z-axis. $c_{r1} \leq r \leq c_{r2}$ $c_{\theta 1} \leq \theta \leq c_{\theta 2}$ $\phi = c_{\phi}$ $\overline{ds} = \pm \overline{ds_{\phi}} = \pm \hat{a}_{\phi} r dr d\theta$